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Abstract: Oral squamous cell carcinoma (OSCC) is one of the most prevalent cancers and
frequently preceded by non-malignant lesions. Using Shifted-Excitation Raman Difference
Spectroscopy (SERDS), principal component and linear discriminant analysis in native tissue
specimens, 9500 raw Raman spectra of OSCC, 4300 of non-malignant lesions and 4200
of physiological mucosa were evaluated. Non-malignant lesions were distinguished from
physiological mucosa with a classification accuracy of 95.3% (95.4% sensitivity, 95.2% specificity,
area under the curve (AUC) 0.99). Discriminating OSCC from non-malignant lesions showed
an accuracy of 88.4% (93.7% sensitivity, 76.7% specificity, AUC 0.93). OSCC was identified
against physiological mucosa with an accuracy of 89.8% (93.7% sensitivity, 81.0% specificity,
AUC 0.90). These findings underline the potential of SERDS for the diagnosis of oral cavity
lesions.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Oral cavity squamous cell carcinoma (OSCC) is among the most common cancers worldwide,
predominantly in men [1–3]. Over 350,000 new incident cases and 150,000 deaths were reported
in 2018 [2]. Despite advances in the therapeutic regimen, the 5-year survival rate for OSCC
patients has remained around 50% over the last 50 years [1]. One of the main reasons is that
the curability of cancer generally depends on the stage at discovery, and although the oral
cavity is easily accessible, most OSCC are diagnosed at an advanced stage (UICC III and IV)
[4]. Anatomic disease extent according to the Union for International Cancer Control (UICC)
TNM classification, i.e. stage, is the major determinant of appropriate treatment and prognosis
[5]. Herein, the T category describes primary tumor site, N describes regional lymph node
involvement and M describes distant metastatic spread. Moreover, patients with OSCC have
an increased chance of developing recurrence or a second primary tumor. This depends on
a variety of factors, such as histopathological tumor grading, TNM classification including
surgical margin status, continued exposure to carcinogens, or occult replacement of the normal
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cell population by a cancer-primed cell population that may initially display no morphological
change, a phenomenon called “field cancerization” [6–8]. Early diagnosis of OSCC (UICC
stage I and stage II) however, can lead to improved curing rates of above 90% [9]. According
to current guidelines for the diagnosis and treatment of oral cavity carcinoma, conspicuous,
irregular mucosal areas require an initial monitoring and conservative treatment. In case of
persistence, the current gold standard to establish a diagnosis and detect potential malignancy is
the histopathological analysis after surgical excision [10–12]. Adhering to the WHO Classification
of Head and Neck Tumors 4th edition, OSCC is the principal malignant surface epithelial tumor
of the oral cavity and mobile tongue [13,14]. Accordingly, OSCC may be preceded by oral
potentially malignant disorders (OPMD), initially benign lesions, associated with a statistically
increased risk of developing oral cancer, such as forms of leukoplakia or erythroplakia [8,15].
Herein, histological grading of epithelial dysplasia as mild, moderate or severe by an evaluation
of cytological and architectural changes, determines potential malignant transformation [16].
Among OPMD, the subgroup of proliferative verrucous leukoplakia with severe dysplasia shows
probability of malignant transformation of up to 50% [17]. In erythroplakia, histologically severe
dysplasia or even carcinoma in situ is frequently observed [18]. Furthermore, abnormal DNA
content, overexpression of molecular tumor markers such as p53 or Cyclin D1 underline the
potential for malignant transformation of over 30% [17,19]. Therefore, surgical excision with
safety margins is indicated. In inflammation or ulceration, tissue destruction or bleeding may be
characteristic, similar to oral cancer. Other lesions such as irritant fibroma or hyper-/parakeratosis
show little to no potential for malignant transformation [17]. As the clinical aspects often overlap,
the distinction can be challenging, even to experienced practitioners and sometimes extensive
monitoring and/or follow-up biopsies are required. For patients this may invoke fear, stress, pain
and iatrogenic damage to healthy tissue. Ascertaining the histopathological diagnosis determines
the subsequent treatment options, thus needs to be performed thoroughly and therefore requires
time [17]. Ultimately, results also depend on quality of the surgical sample and pathological
expertise. At this point in the diagnostic pathway, there is an unmet need for immediate objective
identification of OSCC against non-malignant mucosal lesions at an early stage. To reduce
uncertainties in the diagnostic gap between clinical examination and histopathological analysis,
the development of a non-invasive method capable of discriminating an OSCC from conspicuous,
non-malignant conditions in real time, with a minimal misclassification rate, is desirable.

The implication of optical technologies for early diagnosis of OSCC and premalignant stages
is a field of research in constant progress [20]. It has involved fluorescence spectroscopy
[21,22], Raman spectroscopy [23–27], and confocal laser endomicroscopy [28–30]. The optical
characterization of molecular tissue constituents has great potential for cancer diagnostics and
therapeutic options [31,32]. The Raman spectrum contains information about the molecular
composition of biological tissue, such as the content of lipids, nucleic acids, proteins and water,
from which its patho-physiological status can be retrieved. Specific biomolecules, for example
keratin, an epithelial cellular structural protein, are aberrantly expressed in tumors, which can be
used as inherent and naturally occurring cancer molecular indicators [33]. Raman spectroscopy,
coupled with multivariate analysis, has been shown to be capable of identifying esophageal,
prostate, uterine and cervical cancer tissue [34]. Oral cancers, and other tumor entities, are
often derived from precancerous conditions, that exhibit specific changes in their cellular and
biochemical composition [35]. Hence, the aim of the present study was to investigate whether
Raman spectroscopy has the potential to discriminate conspicuous lesions of the oral cavity.

In the present study, the discrimination of physiological mucosa, non-malignant lesions and
OSCC using Shifted-Excitation Raman Difference Spectroscopy (SERDS) was evaluated. This
technique was first proposed by Shreve et al. and has been established as a useful tool for applying
Raman spectroscopy to samples with strong fluorescence interference, such as viable biologic
tissues [36–39]. Kasha discovered that the fluorescence signal is nearly insensitive to small
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photon energy excitation changes in contrast to the Raman spectrum which shifts according to the
excitation photon energy difference [40]. Thus, subtracting two raw spectra, each excited with a
slightly different photon energy, enables the elimination of the fluorescence background, while
a Raman difference spectrum remains. The SERDS efficiently eliminates both, fluorescence
interference and systematic background, such as etaloning, from spectra without any kind of
sample preparation [41,42]. The major advantage of the SERDS technique is that the fluorescence
is eliminated mainly because of a physical approach. Thus, in contrast to purely mathematical
based baseline correction approaches, it does not affect the Raman features of the spectrum
[43]. To the best of our knowledge, this is the first report using SERDS for the investigation of
malignant and non-malignant lesions of the oral cavity.

2. Method

2.1. Sample preparation

For this study, a total of 37 patients were enrolled from the Department of Oral and Maxillofacial
Surgery, University Medical Center Hamburg-Eppendorf, Germany. Raman spectra were
collected from biopsy samples of clinically apparent, conspicuous lesions (n=22), as well as
from the central aspect of histo-pathologically confirmed bulk OSCC resectates (n=15) and the
corresponding surgical safety margins (i.e. healthy, physiological mucosa, n=9). The former
were taken under local anesthesia in the outpatient clinic, whereas the latter were obtained
under general anesthesia in the operating room. Anatomic locations of the oral cavity were as
follows: hard/soft palate, alveolar ridge, floor of the mouth, tongue, cheek, inner lip. Label-free
tissue specimens were stored in their native state (isotonic 0.9% NaCl solution). According to
clinical workflow and feasibility, the samples were either processed for spectroscopic analysis
immediately, or temporarily stored at 4 °C for a maximum period of six hours. To reduce the
effect of background interference, a dark Teflon sheet was used as a base (see Fig. 1(A)). For
each biopsy sample, after anatomical orientation, in average three measurement locations were
chosen on the mucosal aspect. These laser focal spots were equally distributed over the sample
with a minimum distance of 2 mm in between. In 9 out of 15 resected bulk tissue specimens,
OSCC was centrally located. Currently, there is no uniformity in the definitions of adequate
surgical margins. In a survey of the American Head and Neck Society, members were asked
how they evaluate and define tumor margins [44]. The most common response for distance
of a clear pathologic margin was >5 mm on microscopic evaluation, which is in accordance
with the guidelines of the Royal College of Pathologists [45]. This definition was adopted and
followed by the authors. Histopathologically verified oncologic resection safety margins of 5 mm
healthy, normal tissue were utilized as reference for peripheral measurements of physiological
mucosa. If the histopathological findings revealed marginal resection, distance of < 5 mm or
a dysplastic front, clinically an extension of the surgical margins was performed, and samples
were not proceeded for optical measurements. With regards to heterogeneity of the sample,
including muscle, adipose tissue, bone or salivary gland tissue, only the mucosal aspects of the
specimens were analyzed. In consultation with the attending surgeon, the bulk tissue specimens
were assessed and marked with colored needles indicating anatomical orientation. From each
of these samples, in average eight evenly distributed measurement locations (four central and
four peripheral), with a minimum distance of 2 mm in between, were chosen. The difference
in the number of measurement locations between the biopsies and resected samples was due
to the size of the samples. The typical dimensions of biopsies were smaller than 1× 1x1 cm3,
whereas resected samples exceeded this and often amounted to 5× 5x5 cm3 and more. After
optical measurements, specimens were evaluated by the Institute of Pathology as part of the
clinical routine. Following histopathological confirmation, spectroscopic data was referenced
with the according entities.
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Fig. 1. Experimental Setup. (A) Tissue specimen stored in NaCl solution, prepared for
analysis on Teflon sheet. (B) Schematic figure of self-engineered, compact and portable
Raman sensor consisting of a tunable diode laser, a fiber coupled spectrometer and Raman
probe.



Research Article Vol. 12, No. 2 / 1 February 2021 / Biomedical Optics Express 840

2.2. Technical Setup

For the utilization of Raman spectroscopy in this study design, a Raman sensor was self-developed
(see Fig. 1(B)) [43]. A diode laser (DLpro, Toptica photonics, Munich, Germany) with a variable
wavelength tunable between 770 and 810 nm and a linewidth of less than 500 kHz is used as
the excitation light source. The laser power of 1 W is attenuated to 115 mW using a Glan-laser
prism combined with a half-wave plate. The excitation beam is launched into a glass fiber (200
µm core diameter, 0.22 NA, Ocean Optics, Rochester, New York, USA), which guides the laser
radiation to a Raman probe. Inside the Raman probe, a short pass filter (780/12 Brightline HC,
Semrock, Rochester, New York, USA) suppresses wavelengths longer than 785 nm originating
from fiber-light interactions when the excitation light passes through the glass fiber. The excitation
laser beam is then reflected via a dichroic mirror, which is highly reflective for the excitation
wavelength but transparent for wavelengths longer than 785 nm. It is then focused through a
lens (achromatic lens, THORLABS, Newton, New Jersey, USA) onto the sample with a focal
spot diameter of approximately 200 µm and axial resolution of approximately 5 µm. The axial
resolution was estimated mathematically.

axial resolution ≈
λ

NA2 , λ = 785nm, Numerical Aperture (NA) ≈ 0.4 (1)

A portion of the excited signals (these are mainly elastic light scattering signals, fluorescence
and the desired Raman signals) is detected in back-scattering direction through the same lens. The
red-shifted fluorescence and Raman signals pass the dichroic mirror towards another lens focusing
them onto a detection glass fiber (600 µm core diameter, 0.37 NA, Ocean Optics, Rochester, New
York, USA) guiding the signals from the Raman probe to the spectrometer (Ventana-785-Raman,
Ocean Optics, Rochester, New York, USA). The elastic light scattering signals are filtered out,
first, by the dichroic mirror reflecting them towards the excitation glass fiber and, second, by a
long pass filter mounted between the dichroic mirror and the signal focusing lens. The Ventana
spectrometer analyzes the spectra between 800 and 940 nm, which corresponds to Raman shifts
from 200 to 2000cm−1. The spectral resolution is specified at 810 nm to be 10 cm−1. At 810 nm,
a wavenumber difference of 10 cm−1 corresponds to approximately 0.6 nm. Therefore, signals
with a wavelength difference of minimum 0.6 nm can be spectrally resolved as two different peaks.
With 1024 pixels along the spectral axis of the detector, one pixel corresponds to approximately
0.137 nm (∼2.44 cm−1), which is below the spectral resolution.

Three combined and electrically driven linear translation stages (NRT150, THORLABS,
Newton, New Jersey, USA) were used to move the handheld Raman probe to selected points
on the sample in the xyz-space. The 3D coordinates of a selected measurement point on the
sample were provided by a 3D visualization system (Ensenso N10 stereo camera, IDS Imaging
Development Systems, Obersulm, Germany). The focal spot position was optimized for maximum
signal intensity through the z-translation stage in every measurement point, being focused on
the epithelial surface. As the laser beam penetrates the tissue, the optical density of the focal
spot decreases due to scattering and absorption processes, thus the Raman signal is expected to
originate predominantly from the epithelium [46]. This combination of translation stages and 3D
camera made the subsequent detection of Raman spectra from different measurement locations
on the tissue sample efficient.

2.3. Analysis

At each of the identified measurement locations, 50 single spectra were acquired using the
excitation wavelength of 784 nm. For the acquisition of one spectrum, the integration time, was
set to 1 second (1000 ms). Then the excitation wavelength was automatically shifted to 785 nm,
and another 50 single spectra were recorded from the same measurement location. Mean spectra
were averaged from each of the 50 raw spectra. The extraction of pure Raman spectra from the
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heavily autofluorescence interfered raw mean spectra was done according to the SERDS method
previously described by our workgroup in detail [43] and in short in the following: the two mean
raw spectra, one for each excitation wavelength (784 and 785 nm), are first z-score normalized to
bring them into the same scale. Then the normalized spectra are subtracted from each other to get
a Raman-difference spectrum. As the fluorescence background is supposed to not be influenced
by the excitation wavelength, the majority of the fluorescence background is eliminated by the
subtraction. However, due to photo-bleaching, the resulting difference spectrum still contains
fluorescence residuals. The residual fluorescence, already vastly reduced compared to the original
fluorescence level, is eliminated further using mathematical approaches. First, the center of
the difference spectrum is identified using an asymmetric least squares fit and subtracted from
the difference spectrum. Then a spectrum is reconstructed from the center-corrected difference
spectrum using a mathematical recurrence relation. The obtained reconstructed spectrum still
contains a weak fluorescence background which is eliminated further by applying a baseline
correction based on piecewise asymmetric least squares fitting. Finally, a pure reconstructed
Raman spectrum is obtained.

In order to differentiate between physiological mucosa, OSCC and non-malignant lesions,
Raman shifts between 630 to 1800cm−1 were considered. These spectra were first vector
normalized for principal component analysis (PCA). PCA is a preprocessing method to reduce
the number of spectral parameters by generating a new set of independent features ordered by
the largest variability in the dataset [47]. After that, the differentiation performance between
OSCC and physiological mucosa, OSCC and non-malignant lesions, physiological mucosa and
non-malignant lesions was investigated. To this end, three separate classification models based
on linear discriminant analysis (LDA) were made [48]. Each model was tested by implementing
5-fold cross validation which divided the spectral dataset into training and test datasets in an
iterative loop. In each cross-validation iteration, ∼80% of the dataset were used to train the
model and ∼20% of the dataset were used to test its predication capability. A nested inner
cross-validation was also implemented to compute the optimal number of principal components
and hyperparameters of the classifier based on sequential model-based optimization (also known
as Bayesian optimization) [49]. Moreover, in order to avoid introducing bias to the disadvantage
of classes with minority datasets, each classifier received an equal distribution of both classes for
training by applying methods to deal with data imbalance [50].

3. Results

In total, 42 Raman spectra of healthy, physiological mucosa, 95 Raman spectra of OSCC and
43 Raman spectra of non-malignant lesions were collected from biopsies and resected bulk
tissue samples. Altogether, 22 clinically apparent, conspicuous mucosal lesions, not regressing
upon monitoring and conservative treatment, therefore warranting surgical biopsy, included
one physiological mucosa sample, seven oral squamous cell carcinoma (OSCC) and 14 non-
malignant lesions. The non-malignant lesions involved distinct histopathological entities such as
inflammation, leukoplakia, dysplasia, hyperkeratosis and irritant fibroma. In this pilot study these
lesions were grouped as non-malignant at this point. Table 1 summarizes the analyzed tissues.

Table 1. Summary of patient data and tissue types used in this report

Tissue form
Biopsy Resected OSCC Total

Samples
Meas.
locations Samples

Meas.
locations Samples

Meas.
locations Sites

Physiological mucosa 1 3 9 39 10 42 8

OSCC 7 23 15 72 22 95 9

Non-malignant lesions 14 43 14 43 8
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Figure 2 shows the mean SERDS reconstructed Raman spectra of physiological tissue (green
line), OSCC (red line) and non-malignant lesions (black line) that were averaged from 42, 95 and
43 reconstructed Raman spectra, respectively. Annotations assign the spectral Raman signatures
to their known molecular origin. The differences between physiological and pathological tissues
(non-malignant and OSCC) are noticeable in the whole spectral region analyzed, although more
pronounced in the fingerprint region (1200–1800cm−1). The differences between malignant and
non-malignant lesions were less pronounced and occurred mainly in the region between 800 to
1400 cm−1. The spectral features of physiological tissue of the oral cavity reflected dominant
contribution from lipid molecules, a strong CH2 band around 1448 cm−1, two sharp peaks/bands
around the amide III region, a sharper peak around the amide I region and altered nucleic acid
spectral features. In contrast, spectra from non-malignant and OSCC tissues feature broader
amide I and III regions, a shifted and weaker CH2 band and a strong phenylalanine peak.

Fig. 2. Reconstructed mean Raman spectra of physiological oral tissue (green line),
malignant (red) and non-malignant lesions (black) and with peak position assignment to their
respective molecular origin. Lipids (light green), protein (light yellow), both proteins and
lipids (light magenta), nucleic acid (light red), and proteins, nucleic acid and carbohydrates
(light brown).

Looking at the mean Raman spectra in Fig. 2, several spectral features can be selected to
differentiate physiological tissue from conspicuous lesions, irrespective of whether the diseased
tissue is classified as non-malignant or OSCC. Vibration of the C=O lipid band at 1750cm−1 can
be considered as one criterion for differentiation because it only exists in the physiological tissue.
The physiological mucosa spectral peak/band at 1656 cm−1 in the amide I region, resulting from
the C=C lipid band, is sharper than the amide I peak of the diseased tissue at around 1660 cm−1.
The CH2 band of proteins at around 1451 cm−1 in the diseased tissue also appears shifted from
and weaker in intensity than the equivalent band of lipids in the physiological tissue. The
phenylalanine spectral feature around 1003 cm−1 is stronger in the diseased tissue as compared to
the physiological tissue. Overall, the differences between malignant and non-malignant lesions
are less pronounced.
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In Fig. 3, the difference spectrum (mean spectrum of OSCC minus mean spectrum of non-
malignant lesions) shows the major spectral differences between the diseased tissues. Larger
differences were noticed due to varying nucleic acid content and changes associated to the amide
III region. The differences around the amide I region and due to the CH2 band are minimal.

Fig. 3. Difference spectrum of mean Raman spectrum of non-malignant lesions subtracted
from mean Raman spectrum of OSCC with difference peak assignments to their respective
molecular origin, protein (light yellow), nucleic acid (light red), and both proteins and
nucleic acid (light brown).

In Fig. 4, the result of the principal component analysis between 43 measurements of non-
malignant lesions (hyperkeratosis, inflammation, irritant fibroma, leukoplakia and dysplasia),
95 of OSCC and 42 of physiological mucosa are shown. In this presentation, the distinct tissue
categories are grouped according to the first three principal components (PC1, PC2, PC3) and
separable with little overlap. In this dataset, the first principal component contains 45.08% of the
spectral variation of the oral tissues. The second principal component accounts for 19.96%, the
third comprises 9.50%. The fourth and fifth principal components amount to 12.57% of spectral
variation.

To elucidate the aspects of differentiation, the principal component loading plots can be seen in
Fig. 5. Herein, the correlation between the principal components and Raman spectral contribution
are indicated in shaded black color. Black shows higher contribution of the Raman peaks/bands
to the respective principal component. The main contribution to the first principal component
are the CH2 band of lipid (1448 cm−1), the CH2 band of protein (1451 cm−1), C-H bending mode
of structure protein (1453 cm−1), C-C or C-O stretch (1078 cm−1), C=C stretch or tryptophan at
1618 cm−1, amide III and nucleic acid at 1340 cm−1. The second principal component contains
spectral variation related to the amide I region, nucleic acid (1340 cm−1), amide III, phenylalanine
at 1002/3 cm−1 and proline (943 cm−1). The contribution to the third principal components are
assignable to proline (855 cm−1), O-P-O stretch DNA/RNA (828 cm−1), lipid/C-C stretching
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Fig. 4. Principal Component Analysis scores of Raman spectra of OSCC (red squares),
non-malignant lesions (black triangles) and physiological mucosa (green circles) collected
from 180 measurements.

(collagen) at 868 cm−1 and CH2 twisting of lipid at 1301 cm−1. The fourth and fifth principal
components are mainly assignable to amide III, nucleic acid (1340 cm−1) and proline (1043 cm−1).
These PC loadings demonstrate that the differentiation between OSCC, non-malignant lesions
and physiological mucosa is sensitive to and determined by the biochemical composition of the
tissue.

The feasibility of the classification of physiological, non-malignant and malignant lesions
was explored using LDA. Three LDA classification models were set up to distinguish between
three different datasets: physiological mucosa vs. non-malignant lesions, physiological mucosa
vs. OSCC, and non-malignant lesions vs. OSCC. Figure 6 illustrates the receiver-operating
characteristic curve (ROC) that visualizes the performance of the three classifiers. In the
physiological mucosa vs. non-malignant lesions classification, we found a 5-fold cross-validation
accuracy of 95.3% at a sensitivity of 95.4% and specificity of 95.2%. The area under the curve
was found to be 0.99, with only four out of 85 tissue spectra being misclassified. Spectral
classification of OSCC against physiological mucosa gave an overall accuracy of 89.8% at a
sensitivity of 93.7% and specificity of 81.0%. Here, a total of 123 out of 137 were correctly
classified while eight physiological tissue samples were falsely classified as OSCC and six OSCC
were misclassified as physiological tissue. The respective AUC was determined to be 0.90.
Classification of OSCC against non-malignant tissues resulted in a sensitivity of 93.7% and
specificity of 76.7%. In total, 122 out of 138 pathological tissues were correctly classified while
16 were falsely classified giving an overall accuracy of 88.4% and an AUC of 0.93.
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Fig. 5. PC loading plot for the first five principal components as a function of the Raman
shift.

Fig. 6. Receiver-operating characteristic curve. Performance of the PCA-LDA classifiers,
between physiological mucosa and non-malignant lesions (black curve), physiologic vs.
OSCC (red curve), and OSCC against non-malignant lesions (green curve).
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4. Discussion

The characterization of molecular tissue content by Raman spectroscopy has great potential for
oral cancer diagnostics and is constantly progressing [34]. Our findings demonstrate distinction
of conspicuous, non-malignant lesions, that warranted confirmation by surgical biopsy, from
OSCC and physiological mucosa. The method is based on non-invasive Raman spectroscopy in
combination with PCA-LDA analysis and classification. The data indicate that the majority of
the spectral features of malignant and non-malignant lesions of the oral cavity originate from
protein and nucleic acid molecules. With regards to the available literature, spectroscopic features
around 1750cm−1, 1660 cm−1, 1451 cm−1 or 1003 cm−1 were particularly pronounced in our
experimental setup and therefore useful for distinction [51–57]. This reflects that with the severity
of pathological properties and malignant transformation in oral cancer, protein-related features
[58] and DNA increase [58,59] while lipid features decrease [60–62]. This change from lipid to
protein and DNA in accordance with pathological changes may be attributed to changes in tissue
architecture and morphology, increased angiogenesis and cellular proliferation in premalignant
and malignant conditions [58].

There is a wide variety of Raman spectroscopy methods and applications in biomedical
research in general and in oral cancer diagnostics in particular [34]. Li et al. applied Fourier
transformation near infrared (FT-NIR) Raman spectroscopy to differentiate between normal,
OSCC and dysplastic tissues at different stages [63]. Compared to physiological mucosa, the
authors observed high contents of protein and DNA in oral dysplasia and OSCC. Another
approach in oral cancer diagnosis via Raman spectroscopy is the analysis of specific biomolecules.
Keratin is a structural protein protecting epithelial cells from damage. It can be considered a
molecular indicator for some entities of epithelial cancers, such as oral squamous cell carcinoma.
Chen et al. analyzed OSCC tissues by spectral matching comparison of decomposed Raman
spectra and the standard Raman spectrum of keratin [64]. The decomposed spectral components
in the OSCC tissue samples had higher similarity with the standard keratin spectrum than those
in the normal tissue. For their study, the group employed Multivariate Curve Resolution analysis.

In the present study, combination of PCA-LDA gave the most robust classification results.
This method was also utilized by Guze et al. in a pilot study aimed at differentiating premalignant
oral lesions and OSCC from physiological mucosa and benign lesions in 18 patients [27]. The
authors chose classification of the acquired spectra into two groups: ≥MILD, which contained
spectra from all malignant lesions and lesions with dysplasia which were histopathologically
categorized as moderate or severe. And the second group as ≤LEU, which contained spectra
from benign lesions, including inflammation, candidiasis or leukoplakia, and from physiological
mucosa sites. Using PCA-LDA analysis, they reported the Raman spectra identified were able to
discriminate between ≥MILD and ≤LEU.

In an in vitro study, Carvalho et al. acquired Raman spectra from cultured subcellular regions
to discriminate physiological tissue from its dysplasia and OSCC [53]. From the nuclear Raman
spectra, the group concluded every peak related to vibrational modes of nucleic acids could be
used as a biomarker for discrimination of abnormal against normal cells. Nucleic acids were
also observed to be more prominent in the spectra collected from the abnormal cell lines. The
oral cavity is heterogenous, with subtle differences attributed to the presence or absence of thick,
stratified, squamous, non-keratinizing mucosa in certain sites, which can be detected by Raman
spectroscopy [51]. Studies using Raman and FTIR spectroscopy to detect oral premalignant
diseases, indicate that anatomical site is potentially a confounding factor due to differences in
the epithelium [65,66]. Sahu et al. acquired spectra from buccal mucosa, lip and tongue in
healthy, contralateral (internal healthy control), premalignant and cancer conditions from 85 oral
cancer and 72 healthy subjects to evaluate anatomical differences between subsites and their
possible influence on healthy vs. pathological classification. The group reported major spectral
differences between buccal mucosa, lip and tongue related to lipid and protein content especially
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in the affected and healthy, contralateral conditions. This may be because the spectrum had
contribution from the stroma as well as from the epithelium [58]. In an approach to evaluate 28
healthy volunteers and 171 patients having various lesions of the oral cavity, Krishna et al. stated
that subsite-anatomical differences did interfere with healthy and pathological distinction [67].
However, this may also be due to differences in experimental setup. Lastly, the cell clusters found
in tumors have undergone malignant transformation and de-differentiation of their original tissue,
blurring assignment to mucosal regions of the oral cavity [68]. Nevertheless, we acknowledge
that the anatomical location may be a potential confounding factor. It is therefore a subject of
further investigations in our group.

As emphasized previously, reduction of autofluorescence, which is inherent to viable biologic
tissues, and increasing signal quality, is of high importance for subsequent data processing and
statistical analysis. There are several approaches for the reduction of autofluorescence which can
be divided into computation and physical methods. Computational methods use mathematical
techniques, such as polynomial [69] and penalized least squares fittings [70], to approximate
the autofluorescence background. Despite advancement in these techniques, they bear the risk
of introducing artifacts and incapability of recognizing a Raman peak from background peaks.
Physical methods for autofluorescence suppression include time-gated methods and SERDS.
Time-gating takes advantage of Raman and autofluorescence processes’ different interaction
time to suppress the fluorescence background [71]. Even though robust and accurate, this
approach requires a complicated and expensive experimental setup. A detailed comparison of
these fluorescence rejection strategies with SERDS has been described by our group previously
[39]. With the proposed SERDS technique, sensitivity was above 93%, underlining the potential
for distinction between OSCC, non-malignant lesions and physiological mucosa [43]. Taking
into account the variety of classification and experimental approaches, these data are in line with,
or partly exceeding, values of the available literature where identification of oral pathologies
ranged from 13 to 100% sensitivity [27,58,63–65,67]. Unique about the setup presented here, is
that samples were freshly kept in their native state (isotonic 0.9% NaCl solution), without the
addition of labeling agents and analyzed within a minimum time delay. Although agents such as
nanoparticles may enhance spectral signal quality, their application is often not feasible in clinical
routine. To our understanding, native storage ex vivo resembles a physiological environment of
the oral cavity. While tissue fixation via formaldehyde solution is beneficial for preservation
and histopathological tissue analysis, it does affect the samples’ spectroscopic properties and
therefore optical cancer diagnostics [72]. Moreover, the setup presented here is applicable under
room light conditions, as the SERDS technique can effectively eliminate the interference of
ambient light, which makes it an ideal candidate for potential application intraoperatively or in
the outpatient clinic [73–75].

Although our observations indicate valid and reliable discrimination of oral lesions, limitations
with this study remain. At this point in the clinical diagnostic and therapeutic pathway, there is
an unmet need for immediate objective identification of an invasive OSCC against non-malignant
mucosal lesions and physiological mucosa. By our SERDS-based approach, this was possible
with high accuracy, although the distinction of non-malignant lesions from OSCC was more
challenging than from physiological mucosa, which is plausible. There is no doubt that the
group of non-malignant lesions comprises a variety of entities, with different potential for
malignant transformation. Histological grading of epithelial dysplasia as mild, moderate or severe
by an evaluation of cytological and architectural changes, determines potential of malignant
transformation [16]. The distinction between different degrees of dysplasia, as well as detection
of OPMD, is highly relevant and has vast clinical implications. Once a reliable SERDS-based
method on native tissue specimens has been established as shown in this work, it may serve as
the basis for distinction of subtypes and grading of oral mucosal dysplasia on a larger collective.
Furthermore, the analysis was conducted ex vivo, under standardized conditions in the laboratory,
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after optimization of the experimental setup. In light of these limitations, further measurements
are needed, to increase our database and lay ground for robust classification algorithms with the
support of deep learning techniques. Converting the above-delineated approach into a mobile
system, applicable directly in the oral cavity, with real-time measurements in vivo, will be a major
advancement and is worthwhile being investigated.

5. Conclusion

In this work, we explored whether physiological mucosa, non-malignant lesions and oral cancer
can be differentiated by Raman spectroscopy. To this end, “pure” Raman spectra of the respective
tissues were isolated from heavily fluorescence interfered raw spectra using the SERDS technique.
The results demonstrate that malignant and non-malignant lesions can be differentiated from
physiological tissue of the oral cavity with a high accuracy, despite considerable heterogeneity of
these lesions. The technique showed excellent results for the correct distinction of non-malignant
lesions, that required invasive biopsy, from oral squamous cell carcinoma and physiological
mucosa. The differentiation was found to be correlated to and determined by the spectral features
of protein, lipid and nucleic acid.
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